هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.


منتدى احفاد الخوارزمي
 
الرئيسيةالبوابةأحدث الصورالتسجيلدخول

 

 المتواليات في الرياضيات

اذهب الى الأسفل 
كاتب الموضوعرسالة
طارق المحتسب
طالب جديد
طالب جديد
طارق المحتسب


ذكر عدد الرسائل : 20
العمر : 33
تاريخ الميلاد : 4/8/1991
رقم العضوية : 22
عدد النقاط : 10
تاريخ التسجيل : 28/03/2008

المتواليات في الرياضيات Empty
مُساهمةموضوع: المتواليات في الرياضيات   المتواليات في الرياضيات Emptyالسبت أبريل 19, 2008 11:22 am

المتواليات :
المتوالية في الرياضيات سلسلة من الأرقام المترابطة أو الرموز تسمى الحدود. والأمثلة التالية تحدد ثلاثة أنواع شائعة من المتواليات.

المتوالية الحسابية 1، 2 ، 3 ، 4 ، 5 ، 6 وهكذا.
المتوالية الهندسية 0 ، 2 ، 4 ، 8 ، 16 ، 32 وهكذا.
المتوالية التوافقية 1/2، 1/4، 1/6، 1/8 وهكذا.

وفي كل من هذه المتواليات، تتكون الحدود التالية للحد الأول بطرق مختلفة تُسمَّى الفارق المشترك، أو أساس المتوالية. ويتكون كل حد في المتوالية العددية بإضافة كمية ثابتة إلى الحد الأسبق. وفي المثال الفارق المشترك هو واحد. ويتكون كل حد في المتوالية الهندسية، بضرب الحد الأسبق في كمية تسمى النسبة المشتركة. (أساس المتوالية الهندسية) وفي المثال، النسبة المشتركة هي 2. أما في المتوالية التوافقية فكل حد هو كسر اعتيادي، والبسط فيه قيمته واحد. والمقام يتكون بنفس طريقة المتوالية العددية، وفي المثال الفارق المشترك للمقام هو 2.

والمتواليات مفيدة في حل كثير من المشاكل في العلم ومجال الأعمال. فمثلا تُسهل المتواليات حساب الفائدة المركبة
وقد طور علماء الرياضيات صيغًا لإيجاد قيمة أي حد في المتوالية ولإيجاد مجموع أي عدد من الحدود.
المتوالية الحسابية. قد يكون للمتوالية الحسابية أكثر من حد أول، وأكثر من فارق مشترك. ويتضح ذلك في الأمثلة التالية:

رقم المثال الحد الأول الفارق المشترك المتوالية الحسابية
أ 2 3 2، 5، 8، 11، 14، 17
ب 3 -2 3، 1، -1، -3، -5.
جـ 1 1/2 1، 1/2 1 ، 2 ، 1/2 2 ، 3.
د س ص س،س+ص، س+2ص، س+ 3ص.



ففي المثال أ قيمة الحد الرابع 11 أي تُساوي 2 + 3 + 3 + 3. ويمكن كتابتها بالشكل الآتي 2+(4- 1) 3. ويمكن إيجاد قيمة أي حد بجمع الأول مع حاصل ضرب الفرق المشترك في عدد الحدود ناقص واحد. والحد الأخير أو المجهول هو لن

ل ن = أ + (ن -1) د

ومجموع الحدود الستة الأولى للمثال هي:

2 + 5 + 8 + 11 + 14 + 17 = 57.
لاحظ أن مجموع الحد الأول والحد الأخير 19، وكذلك مجموع الحد الثاني والحد الخامس 5 + 14 = 19 ومجموع الحد الثالث والرابع هو 8 + 11 = 19 ومجموع الحدود الستة 57، وهو مايساوي 19× 3 أو ثلاثة أضعاف الحد الأول والأخير. وعموماً فإن مجموع أي عدد من الحدود للمتوالية الحسابية، هو نصف عدد الحدود مضروباً في مجموع الحدين الأول والأخير. فإذا استخدمنا الرمز من لمجموع الحدود، تكون المعادلة المطلوبة:

من = ن/2 م ن= ( أ + ل ن )
المتوالية الهندسية. يمكن أن يتنوع فيها الحد الأول والنسبة المشتركة (أساس المتوالية) كما يتضح في المثال الآتى:

مثال: الحد الأول النسبة المشتركة المتوالية الهندسية
أ 2 3 2، 6، 18، 54، 162 . .
ب 1 1/2 1، 1/2، 1/4، 1/8، 1/16
جـ أ س أ ، أس، أس²، أس§



ويبين المثال ج أن قيمة أي حد مجهول = أ سن -¥ والأس ن-1، يعني أن س تُستخدم عاملاً ن-1 مرة. وباستخدام هذه المعادلة يمكن حساب الحد السادس في المثال كالآتي:

ل6 =2(3)¹ = 2 × 3 × 3 × 3× 3× 3 = 486

كما أن مجموع أي عدد من الحدود يمكن حسابه بالمعادلة

من = (أ- أ سن) / (أ - س)

فمثلاً مجموع الحدود الأربعة الأولى من المثال أ ُتُحسب كالآتي:

م4= [2-2(3) ¨] / (1-3) = (2-162) / -2 = 80

فإذا كانت س أقل من واحد صحيح، فإن مجموع عدد لانهائي من الحدود يقترب من النهاية أ/ (1- س).
منقوووووول
شكرا
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
المتواليات في الرياضيات
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» الرياضيات في اللغة ... واللغة في الرياضيات
» عصر الرياضيات
» سحر في الرياضيات
» بعض فروع قسم الرياضيات
» خدع الرياضيات

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
 :: قسم المواد :: منتدى الرياضيات :: قسم الرياضيات العامة-
انتقل الى: